
Scientific Visualization, 2018, volume 10, number 4, pages 75 - 92, DOI: 10.26583/sv.10.4.06

Visualization of ray propagation in physically

accurate lighting simulation

B.Kh. Barladyin1, E.D. Birukov2, L.Z. Shapiro3, A.G. Voloboy4

Keldysh Institure of Applied Mathematics of RAS, Moscow, Russia

1 ORCID: 0000-0002-2391-2067, bbarladian@gmail.com

2 ORCID: 0000-0003-4297-6813, birukov@gin.keldysh.ru
3 ORCID: 0000-0002-6350-851X, pls@gin.keldysh.ru

4 ORCID: 0000-0003-1252-8294, voloboy@gin.keldysh.ru

Abstract

The work is devoted to the issues of visualization of the trajectories of light rays during
physically correct lighting simulation of its distribution in the scene by the Monte Carlo ray
tracing. It is proposed to save the rays calculated in the process of tracing to a file that can be
considered as a three-dimensional map of the rays. Multi-threaded algorithms have been de-
veloped for both the creation of such ray maps and their subsequent analysis. The implemen-
tation of the proposed algorithms on multi-core computers has shown their high efficiency.
Particular attention is paid to the integration of the developed algorithms with the CATIA
CAD system.

Keywords: realistic images, global illumination, optic simulation, interactive scene

analysis, illumination maps, three-dimensional ray maps, Monte Carlo raytracing, ray visuali-
zation.

Introduction
The use of physically correct methods for
the calculation of illumination, simulating
the propagation of light and its interaction
with the scene objects, is becoming in-
creasingly used in various fields of science
and industry. In the classical usage of these
methods for realistic images generation [1]
or for designing of various optical and
lighting devices [2], the results of optical
simulation are usually presented in the
form of graphs, tables or images of the dis-
tribution of such light characteristics as
luminance, illuminance or intensity regis-
tered on virtual radiation receivers. This
form of results representation is sufficient
when we are interested in the simulation
result only. However, in some cases, we al-
so need to know how it was obtained, or

what had the greatest impact on the result.
For example, during simulation the lumi-
nance distribution on the surface of the
phone keyboard backlight system, the de-
veloper needs to understand how the light
from the light sources passes through the
entire illumination system and goes
through the upper edge of the key (Fig. 1).
Another relevant example is the analysis of
stray light in a lens objective. The develop-
er needs to understand which surface of
the lens and which lens creates a highlight
on the image. To obtain comprehensive in-
formation on the light propagation in the
optical system, it is convenient to visualize
the trajectories of the simulated rays. A
visual representation of the trajectories of
light rays in the optical system is also use-
ful for a software developer, as a means of
debugging and optimizing algorithms [3].

https://doi.org/10.26583/sv.10.4.06
mailto:bbarladian@gmail.com
mailto:birukov@gin.keldysh.ru
mailto:pls@gin.keldysh.ru
mailto:voloboy@gin.keldysh.ru

Fig. 1. Rays hit the center button

Currently, the generation of realistic imag-
es based on physically correct lighting sim-
ulation is used in all new areas. For exam-
ple, the use of physically correct synthe-
sized images and video sequences in the
training systems of artificial intelligence
[4] [5] [6] is promising. The correctness of
the resulting images is crucial in all these
applications. Otherwise, the goal will not
be achieved, and the intelligent system will
be trained incorrectly. However, this physi-
cal correctness may be impaired due to er-
rors in the simulation program or user er-
rors when describing scenes, the geometry
of objects, optical properties of objects.
Visualization of the propagation of light
rays is one of the most effective means for
detecting and analyzing such errors [3],
[7].
For all these reasons, the visualization of
the trajectories of light rays has actually
become the basic functionality of modern
optical simulation systems. Initially, a vis-
ual representation of the ray trajectories
was implemented in systems for the syn-

thesis of realistic images and optical simu-
lation, developed at Keldysh Institute of
Applied Mathematics RAS (KIAM) [7-9], in
the late 90s. However, the use of these sys-
tems for solving complex problems of de-
signing modern optical devices revealed
certain disadvantages of the implemented
ray visualization algorithms, such as:

 Slow raytracing;

 The impossibility of storing the rays ob-
tained by tracing for subsequent de-
tailed analysis;

 Absence of possibility to visualize rays
paths only for a part of the scene – for
selected light sources, geometrical ob-
jects and virtual measuring devices;

 Absence of integration with computer-
aided design (CAD) systems.

The slowing down of the ray tracing pro-
cess was caused by the visualization tech-
nology used, since one of the requirements
for the previous implementation was the
sequential visualization of the ray traced
segments one by one. In this technology,
the algorithm could use only one thread for

calculations. Using OpenGL to render seg-
ments in this mode is also inefficient. As a
result, when simulating on a typical mod-
ern computer (Intel Core i7-4770 3.4GHz
32GB RAM), the speed of direct Monte
Carlo ray tracing for a typical scene is ~ 1.2
million rays per second, while the visuali-
zation of traced rays occurs at a speed of
only ~ 1300 rays per second. It was sense-
less to add ray storing to the existing algo-
rithm at such a speed of tracing. Removing
these limitations actually required rede-
signing the entire ray visualization module.
The main requirements for the develop-
ment of a new system were the effective use
of multi-core computers both for ray trac-
ing and for analyzing the simulation re-
sults, as well as the integration with CATIA
CAD.
To meet the new requirements, we have
developed new algorithms that efficiently
use multi-core processors. A new module
for visualization of light propagation was
implemented in the basic standalone sys-
tem Lumicept and in the corresponding
system integrated into CATIA. The first re-
sults were reported at conferences [10] and
[11].

Selecting objects for sim-
ulation
Optical simulation in CATIA CAD system
has certain specifics related to the repre-
sentation of geometric objects in the scene.
The scene in the CATIA system document
contains a large number of geometrical ob-
jects and light sources, not all of which are
of interest to the user in this simulation
and visualization of the rays. This may be
caused by the user's desire to exclude auxil-
iary objects from modeling or, on the con-
trary, to include in this simulation only a
part of the scene objects forming a certain
light beam, or to use only that part of the
scene where the user assumes certain prob-
lems. For these reasons, appropriate simu-
lation in CATIA begins with the selection of
objects for the simulation.
The selection of objects for simulation is in
fact the creation of a new scene from ob-
jects that already exist. The corresponding
dialogues for the subsystem integrated in
CATIA are shown in Fig. 2. In the left part
of Fig. 2 shows a dialog in which the ob-
jects selected for simulation are displayed.
The objects themselves can be selected ei-
ther directly in the scene rendering win-
dow, or in the scene tree view as it is shown
in the right-hand side of Fig. 2.

Fig. 2. Objects used for light propagation visualization, scene objects

tree and start of the simulation

In the dialog, it is also possible to specify the saving of data in a spectral form. Also the user
can set the path for saving the simulation results, the number of rays saved and the time limit
for the simulation. After closing the dialog, the ordered simulation is displayed in the scene
tree and can be started as shown on the right side of Fig. 2, using the drop-down dialog. The
user can create an unlimited number of such simulations for different purposes. The dialogue
shown in Fig. 2 was implemented, of course, using the appropriate CATIA tools for user inter-
face creation.
The simulation itself is performed in the special module named I2 Server which is built bas-
ing on the Lumicept system developed in KIAM. Interrogation scheme of CATIA system and
I2 Server module is represented in the upper part of Fig. 3.

Fig. 3. Scheme of interrogation of CATIA with I2 Server and LumiVue in the light propagation

visualization subsystem

CATIA creates the scene description in the
binary format of Lumicept system, stores it
to disk and sends the VR_SCENE_LOAD
(scene loading) command to I2 Server, and
then VR_CALCULATE command (Monte
Carlo raytracing with storing rays to a file
for visualization). Additional parameters
(path to the saved scene data, path to the
file for rays storing, time limit, number of
rays, etc.) are sent using the shared
memory. Schemes of execution of different
commands in I2 Server are similar to each
other. Here there is a detailed description
for VR_CALCULATE command execution

because it is the most complicated com-
mand.

1. CATIA resets the ev1 and ev2 events,

sends the VR_CALCULATE message
(using Windows messages system) and
waits for setting of ev1 event.

2. I2_Server after receiving
VR_CALCULATE message takes
from shared memory path to the file,
loads the scene from it, puts its own
window descriptor to shared memory,
sets the ev1 event and waits for ev2
event setting.

3. CATIA takes from shared memory the
window descriptor, resets the ev1 event
and sets the ev2 event.

4. After ev2 event is set I2 Server executes
the simulation command and after its
completion sets the ev1 event. During
simulation the progress bar shows the
progress of the command execution: ra-
tio of number of simulated rays to
number of totally required rays in per-
cent. The simulation results are stored
to disk by I2 Server.

5. CATIA, while waiting for setting ev1
event, does redraw of its own window
each 100 milliseconds, and simultane-
ously makes I2 Server window active
and topmost. After ev1 event is set
CATIA updates data and scene tree in
its own document corresponding to the
scene which was stored to disk by I2
Server.

Simulation and rays storing
The algorithm for storing the rays obtained
by tracing for one portion of the rays is
shown in Fig. 4. In fact, this is the same
Monte Carlo ray tracing, which is used for
the global illumination calculation. Rays
built with a Monte Carlo tracing will be
saved if the corresponding simulation pa-

rameter is set. In fact, the calculation ker-
nel provides simultaneous computation of
global illumination, storing the results in
the form of irradiance maps or illuminance
values on virtual measuring instruments,
and the ray storing. The illumination val-
ues on the virtual measuring devices are
obtained as a result of the registration of
the rays falling on them. It is produced on-
ly for virtual instruments specified in the
dialog in fig. 2. The results of the registra-
tion of the rays are stored in separate files
for further analysis during the visualization
of the rays. With multi-threaded ray trac-
ing, the algorithm shown in Fig. 4, works
almost independently in each computa-
tional thread for each computed portion of
the rays. The only module in this algorithm
that needs synchronization is the recording
of portions of rays on a disk, since all rays
are written to one file. This synchroniza-
tion is provided by the usual critical section
(CRITICAL_SECTION). It is clear that the
algorithm will remain efficient as long as
the recording of portions on the disk will
be faster than the computational threads
will produce them. Thus, a critical point in
this formally simple algorithm is the effi-
cient compression of the portions of the
rays obtained by Monte-Carlo tracing.

Fig. 4. Algorithm of storing rays during Monte Carlo raytracing

At first it is needed to minimize infor-
mation amount for storing, but at the same
time information should be sufficient for
further analysis. For each ray segment the
following information is being stored:
1. Light source index (short);
2. Object index (short);
3. Triangle index (int). It is used for find-

ing out the ray propagation medium
and surface properties from both sides
of the surface;

4. Coordinates of starting point for the
first (from light source) ray segment
and the end point of the previous seg-
ment for the rest segments (float[3]);

5. Surface normal in the segment starting
point (short[3]);

6. Event type in the end point of the seg-
ment (int);

7. Index of the first descriptor of segment
interrogation with virtual measuring
device (int, -1 if there were no such
event);

8. Number of descriptors related to this
segment (WORD).

Totally 36 bytes are used for recording a
one ray segment. For each ray one more
segment is recorded than they really exist.
The last segment is used to record the co-
ordinates of the end point of the previous
segment, as well as event type and direc-
tion in case if the ray leaves the scene. To
describe the type of event at the end point
of the segment, int is used, since it can con-
tain several events, and a separate bit is
used for each event.
Since simulation can occur both in RGB
and in spectral color space, the length of
the array used to store the color of a ray
segment depends on the color space used
in the simulation. Therefore, the saving of
the color of the ray segment occurs in a
special array of short type elements. For
the ray color in our Monte Carlo ray trac-
ing, normalized values are always used, i.e.
the sum of the color components is equal to
1, therefore the accuracy provided by the
short type (1.0 / 65535 = ~ 1.5e-5) is quite
enough for our ray visualization task. The
index of the first color element in an array
of colors for a given segment is determined
in a natural way as the product of the seg-
ment index and the number of values that

determine the color. These are three for
simulation in RGB space, and the number
of wavelengths during spectral simulation.
Similarly, an array of corresponding de-
scriptors is used to describe the interaction
of a ray with virtual measuring instru-
ments. The descriptor includes the follow-
ing:
1. Index of virtual measuring device with

which there was an interrogation at the
specified ray segment (short);

2. Index or the virtual measuring device
cell where the interrogation was regis-
tered (WORD[2]);

3. Cosine of the angle between the ray and
direction of the virtual measuring de-
vice (short);

4. Coordinates of the intersection point of
the ray and virtual measuring device (or
projection of the intersection point of
ray and surface to the device) in the rel-
ative coordinates of the virtual detector
(WORD[2]);

5. Was the event registered (bool).
The compression itself in our algorithm is
implemented using the shareware library
for data compression zlib [12]. Each of the
arrays – rays segments, events registered
at virtual measuring devices and color
components are compressed separately.
When saving to the file for each portion are
recorded:
1. Compression flag (for the purpose of

debugging there is kept a possibility of
saving non-compressed portion);

2. Compressed segments array and its
length;

3. Compressed array of events registered
at virtual measuring devices and its
length (if present);

4. Number of color channels used for sim-
ulation – 3 for RGB simulation and
number of wavelengths for spectral
simulation. The system allows to con-
tinue calculation and saving rays to the
same file for new rays portions even af-
ter changing color space;

5. Compressed array of color component
values and its length.

This information is sufficient to recover all
the rays received by Monte-Carlo ray trac-
ing and to analyze them. Analysis allows
you to select by a given criterion, visualize

the selected rays in the window along with
the scene geometry using natural or artifi-
cial colors, display all parameters of this
segment in the dialog box for the corre-
sponding user request. The implementa-
tion of this procedure allowed us to trace
and save the rays at a speed of ~ 396720
rays per second instead of ~ 1266 rays per
second for the old algorithm (Intel Core i7-
4770 3.4GHz 32GB, 4 cores, 8 threads).
That is an acceleration of ~ 300 times was
obtained for ray storing.

Stored rays analysis
The resulting simulation file is in fact a
three-dimensional ray map. These ray
maps are used to quickly analyze the light
characteristics of a radiation receiver with
varying parameters, to study the features of
light propagation in the scene, etc. One of
the most important examples of the use of
these maps is the visualization of the prop-
agation of light rays in the design of com-
plex optical systems [13]. To study the de-
tails of the propagation of light and obtain
various statistical characteristics in some
practical cases, three-dimensional maps of
very large size are used. They can contain
tens of millions of rays and hundreds of
millions of segments, along with a large
amount of information about optical events
that have taken place along the ray trajec-
tory. File sizes for storing these maps can
reach several gigabytes.
When visualizing the propagation of light
rays, a typical task that is crucial from the
point of view of processing time is the se-
lection for the further visualization of the
ray trajectories that satisfy the given crite-
rion. The criteria for this selection are the
most diverse and quite complex. The fol-
lowing typical events occurring along the
ray trajectory, which may be of interest in
the study of the optical system [9]:

 A ray was emitted by a given light
source;

 A ray was intersected or not intersected
with specified object face (triangle);

 A ray was intersected with specified
part of a geometrical object of an opti-
cal system and a specific optical trans-
formation took place;

 There was registered an intersection of
ray with specified virtual measuring de-
vice;

 A ray was intersected with a surface
which has specified optical parameters
and a specific optical transformation
took place;

 A ray had undergone specified optical
transformation (specular or diffuse re-
flection, absorption etc) at one of the
optical system objects;

 A ray was registered at the specified
part of the virtual measuring device.

In the general case, a logical expression is
constructed from these elementary events,
represented as a tree of events shown in
Fig. 6, which is the ray selection criterion
for visualization. The expression is con-
structed using the logical intersection (),
union () and logical negation (). For
each given optical conversion, you can
choose which transformations took place
and how many times. For each optical
transformation one can specify which
transformations took place and how many
times.
For comfortable work it is needed to mini-
mize the response time of the system after
any changes of ray selection criterion. It is
desirable to provide the real-time system
response when it is possible. For three-
dimensional ray maps of a huge size it is
desirable that the response time does not
exceed at least several minutes. Since prac-
tically all computers currently used are
multi-core, it seems appropriate to paral-
lelize the process of analyzing three-
dimensional ray maps.
The subsystem of analysis of rays obtained
with Monte Carlo ray tracing includes the
following components:
1. User interface which provides rays se-

lection criteria creation and control of
ray visualization parameters;

2. Reading of a file with stored data and
selection of rays satisfying to the creat-
ed criterion;

3. Visualization of selected rays and user
interface for showing the information
along the selected rays – coordinates of
the start and the end of each segment,
segment colors (RGB and spectral),
name of the ray propagation medium

for specified segment and its basic pa-
rameters, etc.

User interface
The user interface of the ray visualization
subsystem is shown in Fig. 5. The left part
shows the interface implemented in the
CATIA system, and the right part shows
the corresponding interface implemented
in the Lumicept system. Some difference in
the user interface is due to the use of dif-
ferent libraries (RADE in CATIA and QT in
Lumicept), and the use of different objects.
In CATIA, one can use the faces of objects,
including curvilinear, in the criteria for se-
lecting rays, while in the Lumicept system
there is no such concept. CATIA also has

the ability to use as a criterion the ray in-
tersection of a virtual measuring instru-
ment detector area, which is currently not
implemented in the Lumicept system.
An additional, more complex criterion can
be constructed using the visualization cri-
terion editor, originally implemented in the
basic Lumicept system. In CATIA, the im-
plementation of this dialogue is provided
through the I2 Server according to the
scheme shown in Fig. 3 using the
VR_RAY_CRITERIA command. The user
interface of the complex ray selection crite-
rion is shown in Fig. 6. Finally, the criteri-
on combines all the events specified in dia-
logues shown in Figures 5 and 6.

Fig. 5. User interface of ray visualization subsystem.

Fig. 6. User interface of a complicated criterion for ray selection.

For this purpose, the visual analysis module LumiVue is used, which allows you to select and
edit the area on the virtual instrument image as a rectangle or ellipse. The registration of rays
on this area can be considered as an additional criterion in the visualization of rays. An ex-
ample of such a selected area is shown in Fig. 7. Additional possibilities of using the selected
area for image analysis are given in [13].

Fig. 7. Usage of selected region as a criterion

The image is loaded with the result of ray
registration on this virtual measuring de-
vice and the LumiVue window is shown by
the message LUMIVUE_LOAD, which is
sent by CATIA (Fig. 3.) The path to the im-
age file is transmitted through the shared
memory used by the processes. The result
of the simulation in the form of saved rays
can use several virtual measuring devices.
One can choose any of them, or even aban-
don the use of virtual measuring devices in
the analysis. If the virtual device is re-
placed, the LUMIVUE_LOAD message is
sent again and the path to the new file with
the result of registration on the new device
is sent through the shared memory. In case
of refusal to use the measuring device,
CATIA sends a message LUMIVUE_HIDE
and LumiVue hides its window. To get the
parameters of the selected area, CATIA
sends a LUMIVUE_DETECTOR message,
and LumiVue puts all the parameters of the
selected area into shared memory. All oth-

er parameters necessary for the construc-
tion of the criterion, and the path to the file
with the rays are already in shared
memory. CATIA now sends a
VR_RAY_HISTORY message. According to
this message, the I2 Server reads the file
with the rays and begins to select from
them rays that satisfy the constructed crite-
rion.

File reading and rays selec-
tion
Reading a file with a three-dimensional ray
map and selecting rays from it that satisfy
the constructed criterion is the most criti-
cal procedure for the speed of visualizing
light rays. It is extremely important to pro-
vide a user-friendly response time for this
procedure. It is desirable that it does not
exceed a few seconds. The algorithm for
selecting rays satisfying the constructed
criterion is shown in Fig. 8.

On multi-core computers, a parallel ap-
proach to using multiple threads is a natu-
ral approach to speeding up processing.
This approach is effectively used by us for

direct Monte Carlo ray tracing [14]. The
number of threads is chosen, as a rule,
equal to the number of virtual computer
cores.

Fig. 8. General algorithm of selection of rays satisfying some criterion.

It is clear that in the procedure shown on Fig. 8 only unpacking of a portion and checking the
ray against the criterion can be performed in parallel for different ray portions. Reading of
ray portions from file must be performed sequentially because all threads work with the same
file. Adding of a found ray that meets to the criterion to the output stack also cannot be per-
formed in parallel because the stack is common for all threads. So a multithreaded scheme of
selecting rays shown in Fig. 9 was elaborated.

Fig. 9. Multithreaded algorithm of selection of rays satisfying to a criterion

The analysis procedure of the three-
dimensional ray map starts after the user
has specified the necessary parameters of
the ray selection criterion. All necessary
objects are created to store the results of
data processing, in particular, the output
stack of rays, a file with ray map is opened.
Also computational threads for ray selec-

tion are created and started. Further, all
data processing is carried out in computa-
tional threads, while the main thread only
shows the progress of this processing, indi-
cating the percentage of processed rays.
Rays processing in each thread is carried
out according to algorithms shown on fig-
ures 8 and 9:

1. A ray portion is loaded from the file. As
all threads work with the same file a
critical section is used for threads syn-
chronization. As file reading in modern
computers uses the special in-
put/output coprocessor and a cache,
this procedure almost does not restrict
the work of the threads which unpack
the portions and check the criterion.

2. Obtained rays portion is being un-
packed and searching of the rays satis-
fying to the specified criterion is per-
formed.

3. The found ray is added to the output
stack in the format suitable for immedi-
ate visualization. As the output stack is
common for all computational threads,
this adding is also performed using a
critical section. Since this procedure
boils down mainly to adding a pointer
to an object containing an array of seg-
ments to the stack, and quite rarely a
large number of rays are required, the
execution time is quite small and does
not delay the operation of the main
computational threads.

The effectiveness of this procedure can be
characterized by the following values. For a
three-dimensional ray map containing ~
50 million rays (~ 450 million segments)
the total processing time on an Intel Core
(TM) i7–4770 computer (4 cores, 8
threads) is about 40 seconds. In this case,
the file was processed completely, since the
ordered number of rays that satisfy the
specified criterion was not reached. The file
contained spectral data, so the file size was
about 6 Gb. In most practical cases it is suf-
ficient to process only a few million rays. In
this case the processing and visualization
of the selected rays will be carried out in
real time.
The Fig. 10 shows the dependence of the
three-dimensional ray map processing
speed on the number of used threads for
the above computer. It can be seen that the
proposed algorithm scales well with an in-
crease in the number of processors used.
Even the use of virtual processors (adding
5, 6, 7 and 8 threads) gives a noticeable in-
crease in processing speed.

Fig. 10. Dependence of the three-dimensional ray map processing speed on the number of

used threads

Examples of ray visualization
Examples of visualization of the ray paths in the lens system for different areas in the virtual
device image are shown in Fig. 11. A parallel beam of white light falls on the lens, in the direc-
tion deflected from lens axis by an angle of ~ 2 degrees. The lens material has dispersion –
the value of the refraction index depends on the wavelength of the light. Therefore after re-
fraction of a ray at the boundary of two media, the ray is further traced with a value of a single
wavelength selected from a set of wavelengths specified by the user. The wavelength (and ac-
cordingly the direction of the refracted ray) is selected from a given set of wavelengths with a
probability proportional to the part of the ray energy corresponding to the selected wave-
length. For this reason, after refraction the rays in Fig. 11 become colored if a natural color is
selected for visualization. When one clicks the Visual Ray Results Report button, the dialog
box shown in the upper right of the Fig. 11 opens, in which the user can analyze in detail all
the events which took place along the path of the ray.

Fig. 11. Visualization of selected rays and report about the events along the ray path.

Conclusion
The visual representation of the trajecto-
ries of light rays has become in fact the
basic functionality of modern optical simu-
lation systems. The developed algorithms
make it possible to efficiently use multi-
core computers both for calculating the
three-dimensional map of the rays ob-
tained by Monte Carlo ray tracing and for
their visualization using various criteria for
the selection of rays. The developed algo-
rithms are implemented in the standalone
system for the synthesis of realistic images
and optical simulation Lumicept, devel-
oped in KIAM, as well as in the corre-
sponding system of ray visualization inte-
grated into CAD systems CATIA.

Literature

[1] Pharr M., Humphreys G., Physically
Based Rendering: From Theory to Im-
plementation. Second Edition. Morgan
Kaufmann Publishers Inc., 2010.

[2] Bogdanov N., Zhdanov D., Potemin I.,
Zhdanov A. Design of Ergonomic Illu-
mination Systems for Cultural, Medical,
Educational Facilities. The Educational
Review, USA, 1(4), 85-90.
http://dx.doi.org/10.26855/er.2017.04

.001.

[3] Wernert E., A unified environment for
presenting, developing and analyzing
graphicsalgorithms. Computer
Graphics, т. 31, № 3, pp. 26-28, 1997.

[4] Tsirikoglou A., Kronander J., Wren-
ninge M., UngerJ., Procedural Modeling
and Physically Based Rendering for Syn-
thetic Data Generation in Automotive
Applications. arxiv.org. 2017.

[5] McCormac J., Handa A., Leutenegger S.,
Davison A., SceneNet RGB-D: 5M Pho-
torealistic Images of Synthetic Indoor
Trajectories with Ground Truth. The
IEEE International Conference on
Computer Vision (ICCV 2017).

[6] Rozantsev A., Lepetit V., Fua P., On
rendering synthetic images for training
an object detector. Comput. Vis. Image
Underst. 137, C (August 2015), 24-37.
DOI:
http://dx.doi.org/10.1016/j.cviu.2014.1
2.006 .

[7] Voloboj A.G., Vishnyakov S.M., Ga-
laktionov V.A., ZHdanov D.D., Sredstva
vizualizacii rasprostraneniya sveta v
zadachah proektirovaniya i analiza op-
ticheskih sistem // Keldysh Institure of
Applied Mathematics of RAS Preprints,
№ 54, 2007, 20 p [in Russian]

http://dx.doi.org/10.26855/er.2017.04
http://dx.doi.org/10.1016/j.cviu.2014.12.006
http://dx.doi.org/10.1016/j.cviu.2014.12.006

[8] Kopylov E., Dmitriev K., Light propaga-
tion visualization as a tool for 3D scene
analysis in lighting design. Computers &
Graphics, т. 24, № 1, pp. 31-39, 2000.

[9] Voloboj A.G., Galaktionov V.A.,
ZHdanov A.D., ZHdanov D.D., Sredstva
vizualizacii rasprostraneniya svetovyh
luchej v zadachah proektirovaniya
opticheskih sistem. "Informacionnye
tekhnologii i vychislitel'nye sistemy", №
4, c. 28-39, 2009. [in Russian]

[10] Barladyan B., Shapiro L., Voloboy A.,
Ray maps technique for effective inter-
rogation of results of MCRT simulation
// Conference proceedings of 21-th In-
ternational Conference on Computer
Graphics and Vision GraphiCon-2011,
Moscow State University, September
26-30, 2011, Moscow, Russia, pp. 46-49.

[11] B.H. Barladyan, E.D. Biryukov, A.G.
Voloboj, L.Z. SHapiro, «Effektivnyj
algoritm vizualizacii predvaritel'no
rasschitannyh luchej» // GraphiCon-
2018, Tomsk, 24–27 september 2018, p.
36-39. [in Russian]

[12] "zlib" general purpose compression li-
brary, http://zlib.net.ru/.

[13] Barladian B.K., Potemin I.S., Zhdanov
D.D., Voloboy A.G., Shapiro, I.V. Valiev
L.S., Birukov E.D., Visual analysis of the
computer simulation for both imaging
and non-imaging optical systems //
Proc. SPIE 10021, Optical Design and
Testing VII, 100210T (October 31,
2016); doi:10.1117/12.2247751.

[14] B.Kh. Barladian, L.Z. Shapiro,
E.Yu. Denisov, A.G. Voloboy. An effi-
cient mulithreading algorithm for the
simulation of global illumination //
Programming and Computer Software,
2017, Vol. 43, №. 4, pp. 217-
223. DOI: 10.1134/S0361768817040028
.

