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Abstract 

The work is devoted to the issues of visualization of the trajectories of light rays during 
physically correct lighting simulation of its distribution in the scene by the Monte Carlo ray 
tracing. It is proposed to save the rays calculated in the process of tracing to a file that can be 
considered as a three-dimensional map of the rays. Multi-threaded algorithms have been de-
veloped for both the creation of such ray maps and their subsequent analysis. The implemen-
tation of the proposed algorithms on multi-core computers has shown their high efficiency. 
Particular attention is paid to the integration of the developed algorithms with the CATIA 
CAD system. 
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Introduction 
The use of physically correct methods for 
the calculation of illumination, simulating 
the propagation of light and its interaction 
with the scene objects, is becoming in-
creasingly used in various fields of science 
and industry. In the classical usage of these 
methods for realistic images generation [1] 
or for designing of various optical and 
lighting devices [2], the results of optical 
simulation are usually presented in the 
form of graphs, tables or images of the dis-
tribution of such light characteristics as 
luminance, illuminance or intensity regis-
tered on virtual radiation receivers. This 
form of results representation is sufficient 
when we are interested in the simulation 
result only. However, in some cases, we al-
so need to know how it was obtained, or 

what had the greatest impact on the result. 
For example, during simulation the lumi-
nance distribution on the surface of the 
phone keyboard backlight system, the de-
veloper needs to understand how the light 
from the light sources passes through the 
entire illumination system and goes 
through the upper edge of the key (Fig. 1). 
Another relevant example is the analysis of 
stray light in a lens objective. The develop-
er needs to understand which surface of 
the lens and which lens creates a highlight 
on the image. To obtain comprehensive in-
formation on the light propagation in the 
optical system, it is convenient to visualize 
the trajectories of the simulated rays. A 
visual representation of the trajectories of 
light rays in the optical system is also use-
ful for a software developer, as a means of 
debugging and optimizing algorithms [3]. 
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Fig. 1. Rays hit the center button 

 
Currently, the generation of realistic imag-
es based on physically correct lighting sim-
ulation is used in all new areas. For exam-
ple, the use of physically correct synthe-
sized images and video sequences in the 
training systems of artificial intelligence 
[4] [5] [6] is promising. The correctness of 
the resulting images is crucial in all these 
applications. Otherwise, the goal will not 
be achieved, and the intelligent system will 
be trained incorrectly. However, this physi-
cal correctness may be impaired due to er-
rors in the simulation program or user er-
rors when describing scenes, the geometry 
of objects, optical properties of objects. 
Visualization of the propagation of light 
rays is one of the most effective means for 
detecting and analyzing such errors [3], 
[7]. 
For all these reasons, the visualization of 
the trajectories of light rays has actually 
become the basic functionality of modern 
optical simulation systems. Initially, a vis-
ual representation of the ray trajectories 
was implemented in systems for the syn-

thesis of realistic images and optical simu-
lation, developed at Keldysh Institute of 
Applied Mathematics RAS (KIAM) [7-9], in 
the late 90s. However, the use of these sys-
tems for solving complex problems of de-
signing modern optical devices revealed 
certain disadvantages of the implemented 
ray visualization algorithms, such as: 

 Slow raytracing; 

 The impossibility of storing the rays ob-
tained by tracing for subsequent de-
tailed analysis; 

 Absence of possibility to visualize rays 
paths only for a part of the scene – for 
selected light sources, geometrical ob-
jects and virtual measuring devices; 

 Absence of integration with computer-
aided design (CAD) systems. 

The slowing down of the ray tracing pro-
cess was caused by the visualization tech-
nology used, since one of the requirements 
for the previous implementation was the 
sequential visualization of the ray traced 
segments one by one. In this technology, 
the algorithm could use only one thread for 



calculations. Using OpenGL to render seg-
ments in this mode is also inefficient. As a 
result, when simulating on a typical mod-
ern computer (Intel Core i7-4770 3.4GHz 
32GB RAM), the speed of direct Monte 
Carlo ray tracing for a typical scene is ~ 1.2 
million rays per second, while the visuali-
zation of traced rays occurs at a speed of 
only ~ 1300 rays per second. It was sense-
less to add ray storing to the existing algo-
rithm at such a speed of tracing. Removing 
these limitations actually required rede-
signing the entire ray visualization module. 
The main requirements for the develop-
ment of a new system were the effective use 
of multi-core computers both for ray trac-
ing and for analyzing the simulation re-
sults, as well as the integration with CATIA 
CAD. 
To meet the new requirements, we have 
developed new algorithms that efficiently 
use multi-core processors. A new module 
for visualization of light propagation was 
implemented in the basic standalone sys-
tem Lumicept and in the corresponding 
system integrated into CATIA. The first re-
sults were reported at conferences [10] and 
[11]. 

Selecting objects for sim-
ulation 
Optical simulation in CATIA CAD system 
has certain specifics related to the repre-
sentation of geometric objects in the scene. 
The scene in the CATIA system document 
contains a large number of geometrical ob-
jects and light sources, not all of which are 
of interest to the user in this simulation 
and visualization of the rays. This may be 
caused by the user's desire to exclude auxil-
iary objects from modeling or, on the con-
trary, to include in this simulation only a 
part of the scene objects forming a certain 
light beam, or to use only that part of the 
scene where the user assumes certain prob-
lems. For these reasons, appropriate simu-
lation in CATIA begins with the selection of 
objects for the simulation. 
The selection of objects for simulation is in 
fact the creation of a new scene from ob-
jects that already exist. The corresponding 
dialogues for the subsystem integrated in 
CATIA are shown in Fig. 2. In the left part 
of Fig. 2 shows a dialog in which the ob-
jects selected for simulation are displayed. 
The objects themselves can be selected ei-
ther directly in the scene rendering win-
dow, or in the scene tree view as it is shown 
in the right-hand side of Fig. 2. 

 



 
Fig. 2. Objects used for light propagation visualization, scene objects  

tree and start of the simulation 
 
In the dialog, it is also possible to specify the saving of data in a spectral form. Also the user 
can set the path for saving the simulation results, the number of rays saved and the time limit 
for the simulation. After closing the dialog, the ordered simulation is displayed in the scene 
tree and can be started as shown on the right side of Fig. 2, using the drop-down dialog. The 
user can create an unlimited number of such simulations for different purposes. The dialogue 
shown in Fig. 2 was implemented, of course, using the appropriate CATIA tools for user inter-
face creation. 
The simulation itself is performed in the special module named I2 Server which is built bas-
ing on the Lumicept system developed in KIAM. Interrogation scheme of CATIA system and 
I2 Server module is represented in the upper part of Fig. 3. 
 



 
Fig. 3. Scheme of interrogation of CATIA with I2 Server and LumiVue in the light propagation 

visualization subsystem 
 
CATIA creates the scene description in the 
binary format of Lumicept system, stores it 
to disk and sends the VR_SCENE_LOAD 
(scene loading) command to I2 Server, and 
then VR_CALCULATE command (Monte 
Carlo raytracing with storing rays to a file 
for visualization). Additional parameters 
(path to the saved scene data, path to the 
file for rays storing, time limit, number of 
rays, etc.) are sent using the shared 
memory. Schemes of execution of different 
commands in I2 Server are similar to each 
other. Here there is a detailed description 
for VR_CALCULATE command execution 

because it is the most complicated com-
mand. 
 
1. CATIA resets the ev1 and ev2 events, 

sends the VR_CALCULATE message 
(using Windows messages system) and 
waits for setting of ev1 event. 

2. I2_Server after receiving 
VR_CALCULATE message takes 
from shared memory path to the file, 
loads the scene from it, puts its own 
window descriptor to shared memory, 
sets the ev1 event and waits for ev2 
event setting. 



3. CATIA takes from shared memory the 
window descriptor, resets the ev1 event 
and sets the ev2 event. 

4. After ev2 event is set I2 Server executes 
the simulation command and after its 
completion sets the ev1 event. During 
simulation the progress bar shows the 
progress of the command execution: ra-
tio of number of simulated rays to 
number of totally required rays in per-
cent. The simulation results are stored 
to disk by I2 Server. 

5. CATIA, while waiting for setting ev1 
event, does redraw of its own window 
each 100 milliseconds, and simultane-
ously makes I2 Server window active 
and topmost. After ev1 event is set 
CATIA updates data and scene tree in 
its own document corresponding to the 
scene which was stored to disk by I2 
Server. 

Simulation and rays storing 
The algorithm for storing the rays obtained 
by tracing for one portion of the rays is 
shown in Fig. 4. In fact, this is the same 
Monte Carlo ray tracing, which is used for 
the global illumination calculation. Rays 
built with a Monte Carlo tracing will be 
saved if the corresponding simulation pa-

rameter is set. In fact, the calculation ker-
nel provides simultaneous computation of 
global illumination, storing the results in 
the form of irradiance maps or illuminance 
values on virtual measuring instruments, 
and the ray storing. The illumination val-
ues on the virtual measuring devices are 
obtained as a result of the registration of 
the rays falling on them. It is produced on-
ly for virtual instruments specified in the 
dialog in fig. 2. The results of the registra-
tion of the rays are stored in separate files 
for further analysis during the visualization 
of the rays. With multi-threaded ray trac-
ing, the algorithm shown in Fig. 4, works 
almost independently in each computa-
tional thread for each computed portion of 
the rays. The only module in this algorithm 
that needs synchronization is the recording 
of portions of rays on a disk, since all rays 
are written to one file. This synchroniza-
tion is provided by the usual critical section 
(CRITICAL_SECTION). It is clear that the 
algorithm will remain efficient as long as 
the recording of portions on the disk will 
be faster than the computational threads 
will produce them. Thus, a critical point in 
this formally simple algorithm is the effi-
cient compression of the portions of the 
rays obtained by Monte-Carlo tracing. 

 

 
Fig. 4. Algorithm of storing rays during Monte Carlo raytracing 

 
 
 



At first it is needed to minimize infor-
mation amount for storing, but at the same 
time information should be sufficient for 
further analysis. For each ray segment the 
following information is being stored: 
1. Light source index (short); 
2. Object index (short); 
3. Triangle index (int). It is used for find-

ing out the ray propagation medium 
and surface properties from both sides 
of the surface; 

4. Coordinates of starting point for the 
first (from light source) ray segment 
and the end point of the previous seg-
ment for the rest segments (float[3]); 

5. Surface normal in the segment starting 
point (short[3]); 

6. Event type in the end point of the seg-
ment (int); 

7. Index of the first descriptor of segment 
interrogation with virtual measuring 
device (int, -1 if there were no such 
event); 

8. Number of descriptors related to this 
segment (WORD). 

Totally 36 bytes are used for recording a 
one ray segment. For each ray one more 
segment is recorded than they really exist. 
The last segment is used to record the co-
ordinates of the end point of the previous 
segment, as well as event type and direc-
tion in case if the ray leaves the scene. To 
describe the type of event at the end point 
of the segment, int is used, since it can con-
tain several events, and a separate bit is 
used for each event. 
Since simulation can occur both in RGB 
and in spectral color space, the length of 
the array used to store the color of a ray 
segment depends on the color space used 
in the simulation. Therefore, the saving of 
the color of the ray segment occurs in a 
special array of short type elements. For 
the ray color in our Monte Carlo ray trac-
ing, normalized values are always used, i.e. 
the sum of the color components is equal to 
1, therefore the accuracy provided by the 
short type (1.0 / 65535 = ~ 1.5e-5) is quite 
enough for our ray visualization task. The 
index of the first color element in an array 
of colors for a given segment is determined 
in a natural way as the product of the seg-
ment index and the number of values that 

determine the color. These are three for 
simulation in RGB space, and the number 
of wavelengths during spectral simulation. 
Similarly, an array of corresponding de-
scriptors is used to describe the interaction 
of a ray with virtual measuring instru-
ments. The descriptor includes the follow-
ing: 
1. Index of virtual measuring device with 

which there was an interrogation at the 
specified ray segment (short); 

2. Index or the virtual measuring device 
cell where the interrogation was regis-
tered (WORD[2]); 

3. Cosine of the angle between the ray and 
direction of the virtual measuring de-
vice (short); 

4. Coordinates of the intersection point of 
the ray and virtual measuring device (or 
projection of the intersection point of 
ray and surface to the device) in the rel-
ative coordinates of the virtual detector 
(WORD[2]); 

5. Was the event registered (bool). 
The compression itself in our algorithm is 
implemented using the shareware library 
for data compression zlib [12]. Each of the 
arrays – rays segments, events registered 
at virtual measuring devices and color 
components are compressed separately. 
When saving to the file for each portion are 
recorded: 
1. Compression flag (for the purpose of 

debugging there is kept a possibility of 
saving non-compressed portion); 

2. Compressed segments array and its 
length; 

3. Compressed array of events registered 
at virtual measuring devices and its 
length (if present); 

4. Number of color channels used for sim-
ulation – 3 for RGB simulation and 
number of wavelengths for spectral 
simulation. The system allows to con-
tinue calculation and saving rays to the 
same file for new rays portions even af-
ter changing color space; 

5. Compressed array of color component 
values and its length. 

This information is sufficient to recover all 
the rays received by Monte-Carlo ray trac-
ing and to analyze them. Analysis allows 
you to select by a given criterion, visualize 



the selected rays in the window along with 
the scene geometry using natural or artifi-
cial colors, display all parameters of this 
segment in the dialog box for the corre-
sponding user request. The implementa-
tion of this procedure allowed us to trace 
and save the rays at a speed of ~ 396720 
rays per second instead of ~ 1266 rays per 
second for the old algorithm (Intel Core i7-
4770 3.4GHz 32GB, 4 cores, 8 threads). 
That is an acceleration of ~ 300 times was 
obtained for ray storing.  

Stored rays analysis 
The resulting simulation file is in fact a 
three-dimensional ray map. These ray 
maps are used to quickly analyze the light 
characteristics of a radiation receiver with 
varying parameters, to study the features of 
light propagation in the scene, etc. One of 
the most important examples of the use of 
these maps is the visualization of the prop-
agation of light rays in the design of com-
plex optical systems [13]. To study the de-
tails of the propagation of light and obtain 
various statistical characteristics in some 
practical cases, three-dimensional maps of 
very large size are used. They can contain 
tens of millions of rays and hundreds of 
millions of segments, along with a large 
amount of information about optical events 
that have taken place along the ray trajec-
tory. File sizes for storing these maps can 
reach several gigabytes. 
When visualizing the propagation of light 
rays, a typical task that is crucial from the 
point of view of processing time is the se-
lection for the further visualization of the 
ray trajectories that satisfy the given crite-
rion. The criteria for this selection are the 
most diverse and quite complex. The fol-
lowing typical events occurring along the 
ray trajectory, which may be of interest in 
the study of the optical system [9]: 

 A ray was emitted by a given light 
source; 

 A ray was intersected or not intersected 
with specified object face (triangle); 

 A ray was intersected with specified 
part of a geometrical object of an opti-
cal system and a specific optical trans-
formation took place; 

 There was registered an intersection of 
ray with specified virtual measuring de-
vice; 

 A ray was intersected with a surface 
which has specified optical parameters 
and a specific optical transformation 
took place; 

 A ray had undergone specified optical 
transformation (specular or diffuse re-
flection, absorption etc) at one of the 
optical system objects; 

 A ray was registered at the specified 
part of the virtual measuring device. 

In the general case, a logical expression is 
constructed from these elementary events, 
represented as a tree of events shown in 
Fig. 6, which is the ray selection criterion 
for visualization. The expression is con-
structed using the logical intersection ( ), 
union ( ) and logical negation ( ). For 
each given optical conversion, you can 
choose which transformations took place 
and how many times. For each optical 
transformation one can specify which 
transformations took place and how many 
times. 
For comfortable work it is needed to mini-
mize the response time of the system after 
any changes of ray selection criterion. It is 
desirable to provide the real-time system 
response when it is possible. For three-
dimensional ray maps of a huge size it is 
desirable that the response time does not 
exceed at least several minutes. Since prac-
tically all computers currently used are 
multi-core, it seems appropriate to paral-
lelize the process of analyzing three-
dimensional ray maps. 
The subsystem of analysis of rays obtained 
with Monte Carlo ray tracing includes the 
following components: 
1. User interface which provides rays se-

lection criteria creation and control of 
ray visualization parameters; 

2.  Reading of a file with stored data and 
selection of rays satisfying to the creat-
ed criterion; 

3. Visualization of selected rays and user 
interface for showing the information 
along the selected rays – coordinates of 
the start and the end of each segment, 
segment colors (RGB and spectral), 
name of the ray propagation medium 



for specified segment and its basic pa-
rameters, etc. 

User interface 
The user interface of the ray visualization 
subsystem is shown in Fig. 5. The left part 
shows the interface implemented in the 
CATIA system, and the right part shows 
the corresponding interface implemented 
in the Lumicept system. Some difference in 
the user interface is due to the use of dif-
ferent libraries (RADE in CATIA and QT in 
Lumicept), and the use of different objects. 
In CATIA, one can use the faces of objects, 
including curvilinear, in the criteria for se-
lecting rays, while in the Lumicept system 
there is no such concept. CATIA also has 

the ability to use as a criterion the ray in-
tersection of a virtual measuring instru-
ment detector area, which is currently not 
implemented in the Lumicept system. 
An additional, more complex criterion can 
be constructed using the visualization cri-
terion editor, originally implemented in the 
basic Lumicept system. In CATIA, the im-
plementation of this dialogue is provided 
through the I2 Server according to the 
scheme shown in Fig. 3 using the 
VR_RAY_CRITERIA command. The user 
interface of the complex ray selection crite-
rion is shown in Fig. 6. Finally, the criteri-
on combines all the events specified in dia-
logues shown in Figures 5 and 6. 

 

 
Fig. 5. User interface of ray visualization subsystem. 

 



 
Fig. 6. User interface of a complicated criterion for ray selection. 

 
For this purpose, the visual analysis module LumiVue is used, which allows you to select and 
edit the area on the virtual instrument image as a rectangle or ellipse. The registration of rays 
on this area can be considered as an additional criterion in the visualization of rays. An ex-
ample of such a selected area is shown in Fig. 7. Additional possibilities of using the selected 
area for image analysis are given in [13]. 
 



 
Fig. 7. Usage of selected region as a criterion 

 
The image is loaded with the result of ray 
registration on this virtual measuring de-
vice and the LumiVue window is shown by 
the message LUMIVUE_LOAD, which is 
sent by CATIA (Fig. 3.) The path to the im-
age file is transmitted through the shared 
memory used by the processes. The result 
of the simulation in the form of saved rays 
can use several virtual measuring devices. 
One can choose any of them, or even aban-
don the use of virtual measuring devices in 
the analysis. If the virtual device is re-
placed, the LUMIVUE_LOAD message is 
sent again and the path to the new file with 
the result of registration on the new device 
is sent through the shared memory. In case 
of refusal to use the measuring device, 
CATIA sends a message LUMIVUE_HIDE 
and LumiVue hides its window. To get the 
parameters of the selected area, CATIA 
sends a LUMIVUE_DETECTOR message, 
and LumiVue puts all the parameters of the 
selected area into shared memory. All oth-

er parameters necessary for the construc-
tion of the criterion, and the path to the file 
with the rays are already in shared 
memory. CATIA now sends a 
VR_RAY_HISTORY message. According to 
this message, the I2 Server reads the file 
with the rays and begins to select from 
them rays that satisfy the constructed crite-
rion. 

File reading and rays selec-
tion 
Reading a file with a three-dimensional ray 
map and selecting rays from it that satisfy 
the constructed criterion is the most criti-
cal procedure for the speed of visualizing 
light rays. It is extremely important to pro-
vide a user-friendly response time for this 
procedure. It is desirable that it does not 
exceed a few seconds. The algorithm for 
selecting rays satisfying the constructed 
criterion is shown in Fig. 8. 



On multi-core computers, a parallel ap-
proach to using multiple threads is a natu-
ral approach to speeding up processing. 
This approach is effectively used by us for 

direct Monte Carlo ray tracing [14]. The 
number of threads is chosen, as a rule, 
equal to the number of virtual computer 
cores. 

 

 
Fig. 8. General algorithm of selection of rays satisfying some criterion. 

 
It is clear that in the procedure shown on Fig. 8 only unpacking of a portion and checking the 
ray against the criterion can be performed in parallel for different ray portions. Reading of 
ray portions from file must be performed sequentially because all threads work with the same 
file. Adding of a found ray that meets to the criterion to the output stack also cannot be per-
formed in parallel because the stack is common for all threads. So a multithreaded scheme of 
selecting rays shown in Fig. 9 was elaborated. 
 

 
Fig. 9. Multithreaded algorithm of selection of rays satisfying to a criterion 

 
The analysis procedure of the three-
dimensional ray map starts after the user 
has specified the necessary parameters of 
the ray selection criterion. All necessary 
objects are created to store the results of 
data processing, in particular, the output 
stack of rays, a file with ray map is opened. 
Also computational threads for ray selec-

tion are created and started. Further, all 
data processing is carried out in computa-
tional threads, while the main thread only 
shows the progress of this processing, indi-
cating the percentage of processed rays. 
Rays processing in each thread is carried 
out according to algorithms shown on fig-
ures 8 and 9: 



1. A ray portion is loaded from the file. As 
all threads work with the same file a 
critical section is used for threads syn-
chronization. As file reading in modern 
computers uses the special in-
put/output coprocessor and a cache, 
this procedure almost does not restrict 
the work of the threads which unpack 
the portions and check the criterion. 

2. Obtained rays portion is being un-
packed and searching of the rays satis-
fying to the specified criterion is per-
formed.  

3. The found ray is added to the output 
stack in the format suitable for immedi-
ate visualization. As the output stack is 
common for all computational threads, 
this adding is also performed using a 
critical section. Since this procedure 
boils down mainly to adding a pointer 
to an object containing an array of seg-
ments to the stack, and quite rarely a 
large number of rays are required, the 
execution time is quite small and does 
not delay the operation of the main 
computational threads. 

The effectiveness of this procedure can be 
characterized by the following values. For a 
three-dimensional ray map containing ~ 
50 million rays (~ 450 million segments) 
the total processing time on an Intel Core 
(TM) i7–4770 computer (4 cores, 8 
threads) is about 40 seconds. In this case, 
the file was processed completely, since the 
ordered number of rays that satisfy the 
specified criterion was not reached. The file 
contained spectral data, so the file size was 
about 6 Gb. In most practical cases it is suf-
ficient to process only a few million rays. In 
this case the processing and visualization 
of the selected rays will be carried out in 
real time. 
The Fig. 10 shows the dependence of the 
three-dimensional ray map processing 
speed on the number of used threads for 
the above computer. It can be seen that the 
proposed algorithm scales well with an in-
crease in the number of processors used. 
Even the use of virtual processors (adding 
5, 6, 7 and 8 threads) gives a noticeable in-
crease in processing speed. 

 

 
Fig. 10. Dependence of the three-dimensional ray map processing speed on the number of 

used threads 
 



Examples of ray visualization 
Examples of visualization of the ray paths in the lens system for different areas in the virtual 
device image are shown in Fig. 11. A parallel beam of white light falls on the lens, in the direc-
tion deflected from lens axis by an angle of ~ 2 degrees. The lens material has dispersion – 
the value of the refraction index depends on the wavelength of the light. Therefore after re-
fraction of a ray at the boundary of two media, the ray is further traced with a value of a single 
wavelength selected from a set of wavelengths specified by the user. The wavelength (and ac-
cordingly the direction of the refracted ray) is selected from a given set of wavelengths with a 
probability proportional to the part of the ray energy corresponding to the selected wave-
length. For this reason, after refraction the rays in Fig. 11 become colored if a natural color is 
selected for visualization. When one clicks the Visual Ray Results Report button, the dialog 
box shown in the upper right of the Fig. 11 opens, in which the user can analyze in detail all 
the events which took place along the path of the ray.  
 

 
 



 
 

 
 



 
Fig. 11. Visualization of selected rays and report about the events along the ray path. 

 

Conclusion 
The visual representation of the trajecto-
ries of light rays has become in fact the 
basic functionality of modern optical simu-
lation systems. The developed algorithms 
make it possible to efficiently use multi-
core computers both for calculating the 
three-dimensional map of the rays ob-
tained by Monte Carlo ray tracing and for 
their visualization using various criteria for 
the selection of rays. The developed algo-
rithms are implemented in the standalone 
system for the synthesis of realistic images 
and optical simulation Lumicept, devel-
oped in KIAM, as well as in the corre-
sponding system of ray visualization inte-
grated into CAD systems CATIA. 
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